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Geomagnetic Probing of Core Geodynamics 
and Earth’s Magnetic Shield 

As Earth’s main magnetic field weakens, our magnetic shield against the onslaught of the 
solar wind thins. And the field strength needed to fend off battering by solar coronal 
mass ejections is decreasing, just when the delicate complexity of modem, vulnerable, 
electro-technological systems is increasing at an unprecedented rate. Recently, a working 
group of distinguished scientist from across the nation has asked NASA’s Solid Earth and 
Natural Hazards program a key question: What are the dynamics of Earth’s magnetic field 
and its interactions with the Earth system? 

Some answers to part of this question come from &verse studies of Earth’s core 
geodynamo, a dynamical system as complex as weather and climate, yet buried deep 
under 1800 miles of rocky mantle. Electric current flowing in Earth’s metallic core is the 
accepted main source of the main field, but it is weakening faster than expected from the 
small electrical resistivity of the metal. According to one theory, as Earth cools over 
geologic time, the solid iron inner core freezes from the molten outer core. This liberates 
latent heat and buoyant slag whch rise, stirring the outer core to motion at speeds of 
several miles per year. But whatever causes the motion, dynamo action in the core 
transforms kinetic energy of the motion into magnetic energy of the field. Some of this 
energy emerges as our largely dipolar magnetic shield. But sometimes the transformation 
might go the other way, with the core running like a motor instead of a generator. This 
may accelerate core motions, weaken our shield, and perhaps drive our main axial dipole 
field to zero and beyond - to a reversed polarity. 

Paleomagnetic studies of crustal rocks magnetized in the geologic past reveal that polarity 
reversals have occurred many times during Earth’s history. Networked super-computer 
simulations of core field and flow, including effects of gravitational, pressure, rotational 
Coriolis, magnetic and viscous forces, suggest how t h s  might happen in detail. And 
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space-based measurements of the real, time-varying magnetic field help constrain 
estimates of the speed and direction of fluid iron flowing near the top of the core and 
enable tests of some hypotheses about such flow. 

Many core flow estimates omit narrow scale features, less than about 600 miles across. 
This is in part because observed changes in the main field are broad scale, so narrow scale 
flow is not easily resolved. Some estimates also assume the magnetic forces near the top 
of the core are negligible compared with other forces. Of course, doubts abound 
concerning both the scale of the flow and the strength of magnetic forces in a liquid metal 
buried beneath 1800 miles of rock. 

Now scientists at NASA’s Goddard Space Flight Center have developed and applied 
methods to test the hypotheses of narrow scale flow and of a dynamically weak magnetic 
field near the top of Earth’s core. Using two completely different methods, C. V. 
Voorhies has shown these hypotheses lead to specific theoretical forms for the 
“spectrum” of Earth’s main magnetic field and the spectrum of its rate of change. Much 
as solar physicists use a prism to separate sunlight into its spectrum, from long 
wavelength red to short wavelength blue light, geophysicists use a digital prism, spherical 
harmonic analysis, to separate the measured geomagnetic field into its spectrum, from 
long to short wavelength fields. They do this for the rate of change of the field as well. 

To test a hypothesis, Voorhies fits a theoretical spectrum to an observational spectrum. 
This yields an estimate of the radius of Earth’s core and its uncertainty. If the estimate 
agrees with the well-established core radius, determined by independent seismological 
techniques, then the hypothesis passes the test. If not, it fails. The weak field and narrow 
scale flow hypotheses each pass key tests, both separately and together. Recent analysis 
of data from the Danish Geomagnetic Research Satellite, however, suggests the core flow 
may have gotten a bit broader in scale, or better organized, over the past 20 years. 

For further information, including how compact eddies in a fluid conductor cause 
magnetic field changes over all scales, and how the magneto-geostrophic vorticity 
balance constrains kinetic-to-magnetic energy conversion atop the geodynamo, see 
‘‘Narrow scale flow and a weak field by the top of Earth’s core: evidence from (arsted, 
Magsat, and secular variation” by Coerte V. Voorhies, submitted for publication in the 
American Geophysical Union’s Journal of Geophysical Research - Solid Earth. 
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Abstract: To test two hypotheses against seismology, the IZlrsted Irutial Field Model is used to 
estimate the radius of Earth’s core by spectral methods. The model coefficients are used to 
compute the mean square magnetic flux density in spherical harmonics of degree n on the 
reference sphere of radius a = 6371.2 km, which is an observational spectrum R,. The theoretical 
spectrum tested, {R:} = K(n+1/2)[(n(n+l)]-’(c/a) , is obtained from the hypotheses of narrow 
scale flow and a dynamically weak magnetic field near the top of Earth’s core; it describes a low 
degree, core-source magnetic energy range. Core radius c and amplitude K are estimated by 
fitting log-theoretical to ‘log-observational spectra at low degrees. Estimates of c from R, of 
degrees 1 through N vary between 3441 and 3542 km as N increases from 4 to 12. None of these 
estimates differ significantly from the seismologic core radius of 3480 km. Significant 
differences do occur if N exceeds 12, which is consistent with appreciable non-core, crustal 
source fields at degrees 13 and above, or if other spectral forms are assumed. Similar results are 
obtained from the 1980 epoch Magsat model CM3. One way to deduce {Rn‘} uses an 
expectation spectrum for low degree secular variation (SV) induced by narrow scale flow near 
the top of Earth’s core, (Fn‘} = Cn(n+l/2)(ntl)(~/a)~~+~. The value of c obtained by fitting this 
form to the mean observational SV spectrum from model GSFC 9/80 is 3470 91 km, also in 
accord with seismologic estimates. This test of the narrow scale flow hypothesis is independent 
of the weak field hypothesis. The agreement between SV, Magsat, QIrsted and seismologic 
estimates of core radius means the hypotheses pass these tests. Additional tests are described. 

2n+4 . 

1. Introduction 

Among many physical hypotheses about Earth’s interior, let us develop and test two of 

geomagnetic and geodynamic interest. The first is the hypothesis of narrow scale fluid flow by 

the top of Earth’s core, which concerns core kinematics and geomagnetic secular variation (SV; 

see, e.g., Roberts & Scott [1965], Backus [1968]). “Narrow scale” here includes horizontal 

length scales less than about lo3 km, such as the 4.2 km scale of Benton [1992]. Many 

inversions of global geomagnetic change for core surface flow estimate only a broad-scale flow 

with features over lo3 km across (see, e.g., Voorhies [1986, 1993, 19951). 

The second hypothesis 

by the top of Earth’s core. 

is that of a dynamically weak Lorentz force, or weak magnetic field, 

This concerns core dynamics and the likelihood that the deep mantle 
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is too poor a conductor to allow much electric current across the core-mantle boundary (CMB; 

see, e.g., LeMouel [1984], Gubbins & Roberts [1987], Voorhies [1991]). “Dynamically weak” 

here includes force magnitudes much less than those of gravity, pressure and the Coriolis effect, 

albeit not necessarily as weak as the net force driving broad-scale accelerations of about 2 ~ l O - l ~  

m / s 2  [Voorhies, 19951. This surficially weak field hypothesis is, however, compatible with a 

strong toroidal magnetic field deeper in the core (see, e.g., Backus [1986], Roberts & Gubbins 

[1987], Benton [1992]). A test might confirm that the potential field on Earth’s surface mainly 

represents a poloidal field from within the core, instead of from a strong toroidal core field 

threading CMB topography - hence a slight bending of otherwise toroidal field and poloidal 

coupling currents at a somewhat smaller jump in conductivity across the Ch4B. 

There are alternative hypotheses which have been tested; yet close fits to geomagnetic change 

obtained with broad-scale, non-geostrophic, core surface flows do not necessarily imply that 

narrow scale flow andor weak field hypotheses are in error (see, ,e.g., Voorhies [1995]). 

Similarly, presence of some narrow scale flow does not imply absence of all broad-scale flow: 

Our hypotheses are embedded in a larger theory and a vast body of geomagnetic observations 

which ease their conversion into quantitatively testable forms. To this end, let us establish 

notation and a CMB layer model in sections 2 & 3; develop and test the narrow scale flow 

hypothesis in sections 4 & 5;  develop and test the weak field hypothesis in sections 6 & 7; and 

offer a constraint on either the conductivity or the magnetic Reynolds number of Earth’s core. 

2. Notation and Background 

Let B(r, t) denote magnetic flux density at time t and position r in geocentric spherical polar 

coordmates (r, 6, $) caused by electric current of density J and magnetization M within the earth. 

Above Earth’s surface, solenoidal B equals the negative gradient of the zero-mean scalar internal 
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magnetic potential V. This potential satisfies Laplace’s equation and has a Schmidt-normalized 

spherical harmonic expansion with Gauss coefficients of degree n and order m, denoted [g,”(t), 

hnm(t)] on a reference sphere of radius a = 6371.2 km. Coefficients through finite degree NF can 

be estimated by spherical harmonic analysis of the measured field, which also enables separation 

of the internal-source field considered here from external-source fields (see, e.g., Langel [ 19871). 

As is also well-known, the mean square field represented by harmonics of degree n, averaged 

over a sphere of radius r containing the sources, is given by 

n 

m=O 
R,(r, t )  = (n + l)(a/r)2”*4 c [g,”(r)I2 + [hnrn(t)l2 

(see, e.g., Lowes [1966], Luke  [1957], Muuersberger [1956]; Meyer [1985]). The R, form a 

discrete geomagnetic spectrum with units of T2. The integral of magnetic energy density over the 

sphere has a related spectrum, 271r2Rn/~o in vacuum permeability p,,, with units of spatial power 

or force (J/m). A spherical harmonic expansion is equivalent to a centered, 2n-pole moment 

expansion, so each R, represents a multipole power. 

The mean square rate of change of the magnetic field represented by harmonics of degree n, 

averaged over the same sphere, is given by the SV spectrum 

Note that F, is not a, R,; moreover, the time average of magnetic spectrum (l), denoted din>, is 

not generally the spectrum of the time averaged field. Similarly, when SV itself varies in time, 

the time average of SV spectrum (2), denoted e,>, is not the spectrum of net magnetic change. 

Spectra computed from coefficients determined by weighted least squares fits to geomagnetic 

measurements, with no assumptions about a core field, are here called “observational spectra”. 
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I The accuracy of an observational spectrum depends on geomagnetic field modeling procedure, 

I such as the choice of NF, as well as data selection, distribution and accuracy. Spectra obtained 

, from physical hypotheses about sources are here called “theoretical spectra” (see, e.g., McLeod 

[ 19961; Voorhies [1998]; Voorhies, Sabaka & Purucker [2002]). Hypotheses about averages 

over physical processes may yield a theoretical spectrum that is also a mean, or “expectation 

spectrum”, denoted {Rn} for the main field or {Fn}  for the SV. 

l 

I 

I 
I 

Observational spectra Rn determined by analyses of satellite magnetic data have been 

interpreted in terms of a mainly core-source field for n e 14 and a dominantly crustal-source field 

for n > 14 (see, e.g., Langel & Estes [1982], Cain et al. [1989], Voorhies, Sabaka & Purucker 

[2002]). A review of publications bearing on a core-source interpretation for portions of R, and 

Fn is omitted for brevity (see, e.g., Booker [1969]; Verosub & Cox [1971]; Lowes [1974]; 

McLeod & Coleman [1980]; Hide & Malin [1981]; Langel & Estes [1982]; Benton et al. [1982]; 

Shure, Parker & Backus [1982]; Voorhies & Benton [1982]; Gubbins [1983]; Stevenson [1983]; 

Voorhies [1984]; Gubbins & Bloxham [1985]; McLeod [1985, 19961; Meyer [1985]; Benton & 
I 
I 
I 

Alldredge [1987]; Benton & Voorhies [1987]; Backus [1988]; Constable & Parker [1988]; Cain 

et al. [1989]; Hulot, LeMouel & Wahr [1992]; Harrison [1994]; Hulot & LeMouel [1994]; 

Voorhies & Conrad [1996]; Walker & Backus [1997]; Voorhies et al. [2002]; De Santis, 

Barraclough & Tozzi [2003]). 

Clearly, an observational spectrum may be used to help test a theoretical spectrum, hence its 

underlying physical hypotheses. There is, however, a third class of spectra, here called 

“constrained spectra”, computed from coefficients constrained by one or more assumptions about 

a core field (see, e.g., Shure, Parker & Backus [1982]; Gubbins [1983]; Backus [1988]). The 

independence, hence utility, of a constrained spectrum can be compromised by constraints that 

I force it to either agree or disagree with a theoretical spectrum. In special circumstances, 
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however, the statistical significance of increased misfit to measured data caused by a constraint 

could provide a test of physical hypotheses underlying the constraint. 

Theoretical spectra from sources in a roughly spherical core of radius c are here denoted R:. 

For example, Gubbins' [1975] expression for the minimum value of the finite Ohmic dissipation 

in the core implies that, for degrees in a magnetic dissipation range defined by n 2 ND, 

R:(a; n >ND) 5 KG n-2-6 (c/a)2", (3 a) 

where constant KG > 0 and 6 > 0. Though finite. ND may be much larger than 12. So there may 

be a low degree magnetic energy range, defined by n 5 NE < ND, and perhaps an intermediate, if 

not inertial, sub-range defined by NE < n < ND. This is the case for theoretical spectra of 

Stevenson [1983] and McLeod [1985, 19961, as shown in Appendix A. A scale analysis 

illustrates the physical plausibility of a generalized Stevenson - McLeod relation, 

{ ~ : ( r  > c; n 5 N E ) )  = K (n + ~)[n(n+l)] - '  ( ~ / r ) ~ " + ~ ,  (3b) 

as an expectation spectrum for low degrees, as shown in Appendix B. 

Both the scale analysis and the empirical approach in section 6 yield spectrum (3b) as an 

expected consequence of narrow scale flow and a weak field by the top of the core. Neither 

specify expected spectral variance, denoted {(R: - {Rn"})2}; therefore, tests of spectrum (3b) are 

here limited to comparisons between magnetic estimates of c and independent estimates. 

Seismologic estimates of c differ by but a few km and are here denoted cs = 3480 km (see, e.g., 

Dziewonski & Anderson [ 19811; Kennett, Engdahl & Bulland [1995]). 

3. CMB Layer and Narrow Scale Flow 

The transition from fluid conducting core to rigid resistive mantle has long been modeled 

simply by a sharp, impenetrable interface: a fixed jump in material properties across the CMB. 

Finite Lorentz and viscous forces are ensured by continuity of both magnetic and hydrodynamic 
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stress tensors across t h s  interface. Then B is also continuous and the relative velocity u of a 

Newtonian fluid that wets the mantle satisfies both lunematic and no-slip CMB conditions. 
~ 

Fluid motion at depth indicates a boundary layer between the interface and a main stream. 

Analyses of quasi-steady magnetic, mass, and momentum transport equations indicate a thin, 
~ 

I 
I 

weak, boundary layer that neither generates much electrical current nor absorbs appreciable 

I normal fluid flow (see, e.g., Ball, Kahle & Vestine [1969], Hide & Stewartson [1972], Benton 

[198l], Gubbinj. & Roberts [1987], Benton [1992]). This depends on a kinematic shear viscosity 

v that is very small and a magnetic diffusivity r\ that is not too large, conditions met with v = 

3 ~ 1 0 - ~  m2/s and q s (bo)-' = 1.6 m2/s for electric conductivity CJ = 5x105 S/m [Poirier, 1988; 

Lumb & Aldridge, 1991; Voorhies, 1999; Dobson et al., 20001. A thin viscous sub-layer is also 

suggested by equating typical magnitudes of tangential viscous forces with Coriolis or Lorentz 

forces and solving for Ekman or Hartmann scale depths, 6~ = 8 cm or 8~ = 15 cm, respectively. 

The induction equation for uniform o, our non-conservative magnetic transport equation 

& B  = VX(UX B) + ~ V X V X B  , (4) 

shows core-source SV can be induced by mainly lateral motion at the base of a viscous sub-layer. 

A feeble boundary current implies a small jump in B across the sub-layer, negligibly small for the 

normal component. Though purely diffusive at the interface itself, the radial component of (4) 

has thus been used to analyze SV in terms of broad-scale fluid flow, and occasionally flux 

diffusion, at the top of a spherical main stream. Constrained inversions of geomagnetic secular 

change indicate a typical flow speed U of about 7.5 Myr (see, e.g., Voorhies [1995]). 

With the foregoing values for U, &, v and c,, the main stream Reynolds number Uc, /v of 

about 3x10' is so much greater than the boundary number U&/v of about 60 as to indicate some 

small scale motions near the top of the core, perhaps in a thicker, unsteady, second boundary 
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layer featuring eddy mixing and enhanced diffusion - if not entrainment of the overlying viscous 

sub-layer. Instead of a typical width for fronts between broad regions of more uniform flow, the 

4.2 km lateral length scale for fluid velocity obtained by Benton [1992], denoted lo,  may describe 

a seething mass of short-lived, rotationally polarized hydromagnetic eddies. By equation (4), 

such narrow scale eddies could individually induce narrow scale field variations, yet could also 

contribute collectively to observable, broad-scale SV. 

A quantitative model of this contribution is needed to test the narrow scale flow hypothesis. 

A model consisting of pseudo-random walks of magnetic field line foot points with a single eddy 
5 

diffusivity Ulo =: 1 m2/s seems too much like molecular magnetic diffusion to test; moreover, a 

linear diffusion term with scale-invariant diffusivity cannot describe how narrow scale flow 

induces broad-scale SV by mode-mixing. Deterministic inversions of (4) do not resolve narrow 

eddies and might misattribute eddy mixing of magnetic modes to broad-scale flow or flux 

diffusion. Deterministic forward models, notably numerical dynamo models that solve a system 

of magnetic, mass, momentum and energy transport equations closed by an equation of state (see, 

e.g., Glatzrnaier & Roberts [1995a,b]), can better resolve compact eddies and effects of mode 

mixing. 

For example, a dynamo simulation used to investigate the frozen-flux core approximation 

included degrees as high as 239 [Roberts & Glatzmaier, 20001; yet observational field models 

similarly used included degrees of at most 13 and often 10 or less [Hide & Malin, 1981; Voorhies 

& Benton, 1982; Voorhies, 1984; Benton & Voorhies, 19871. With I = [8m,2/n(n+1)]”2, we find 

Zsim 2 73 km = 1710 and lobs 2 1300 lun = 18Zsim; therefore, finer resolution is needed to simulate 

eddies of scale lo. Additional assumptions about material properties, turbulent diffusivities, 

boundary conditions, and initial conditions further complicate hypothesis testing via numerical 
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simulation (see, e.g., Glatzmaier [2002]). Both forward and inverse deterministic models of SV 

induced by narrow scale flow are bypassed here via a statistical kinematic model of SV induced 

by compact eddies. 

4. An Equivalent SV Spectrum from Narrow Scale Flow 

On the narrow scale flow hypothesis, magnetic changes at different locations at the top of the 

core are induced by different eddies transporting different local fields in different directions at 

different speeds. Such changes - may well appear uncorrelated on scales broader than the eddies. 

Mathematically, the magnetic change induced by each narrow scale eddy can be approximated in 

the far field, notably well outside the core, by an equivalent source of change at the base of a 

viscous sub-layer. Following McLeod [ 19961, quasi-static lateral magnetic transport during 

differential interval At causes differential exterior magnetic change AB equivalent to differential 

dipole moment changes Adi scattered atop the main stream at radius c- (i = 1, 2, 3, . . . , I>. 

To see this, recall that a single magnetic flux vector Bod4 at fixed position xo on the surface 

A of the source region acts as the point source of a dipole field with moment proportional to 

Bo&. The magnetostatic field at position x due to this equivalent source is well-known (see, 

e.g., Jackson [ 1975, equation 5.641). Infinitesimal quasi-static lateral displacement Ax of this 

single magnetic vector, with no change in orientation and magnitude, would cause a net change 

in the exterior field equivalent to a differential quadrupole moment at xo + Ad2. More generally, 

however, there is a magnetic flux vector at each position on the source surface; lateral transport 

replaces the vector at xo with an adjacent vector of slightly different orientation and magnitude; 

and the change in the exterior field is equivalent to that of a differential dipole moment Ado at XO. 

Given many equivalent source changes Adi at xi on A (i = 1, 2, 3, . . ., I ) ,  the total change in the 

exterior field AB at 1x1 > c’ follows by superposition. In the continuum, a differential change in 



surface magnetic moment density at x’ on c- replaces discrete Adi as the equivalent source for 

exterior secular change AB(x,t), which follows by integration over x’  

Elements of the dyad formed by two differential dipole moment changes at two well 

separated points, [Adl][Ad2IT, may be either positive or negative. The average over a 

kinematically unbiased ensemble of such dyads gives zero cross-correlations, but non-zero auto- 

correlations. The resulting expectation spectrum for broad-scale SV is equivalent to that from 

laterally uncorrelated, rmdomly varying dipole moments on the source shell c‘, which is given by 

{ ~ c ( r  > c-)) = c n (n + 1/2)(n + 1)(c-/r)2n+4 . (5) 

Equation ( 5 )  differs slightly from McLeod [1996, equation (1 l)] because changes in horizontal as 

well as radial components of an equivalent source can contribute to { F:} : for example, consider 

rotation about the vertical of a horizontal equivalent source at the equator. Positive amplitude C 

is proportional to {Z(Adi/At)2}. Physically, C tends to increase with transport speed, field 

gradients and intensity; yet the mathematical derivation of spectrum (5) in Appendix C does not 

use equation (4). It uses steps analogous to those in Voorhies [1998, equations (6a)-(20b)]. 

Laterally uncorrelated dipole changes offer a rough model of SV rich in narrow features; yet 

the sum of attenuated cubic SV spectrum (5 )  over n converges on all spheres of radius r >  c > c-. 

The cubic polynomial, whch modulates the exponential attenuation ( ~ - / r ) ~ ~ + ~  of a potential field, 

increases with n faster than does the linear polynomial obtained from SV sources equivalent to 

uncorrelated Dirac delta-functions in B,. The latter are sources for the famous “white noise” 

spectrum, so SV spectrum ( 5 )  is said to be “blue” or “hard” - to borrow descriptors of spectra 

rich in short wavelength components from optical or X-ray spectroscopy, respectively. Of 

course, no single Ad represents perfectly the magnetic change induced by an extended eddy, so 

spectrum ( 5 )  will not represent SV on scales as narrow as the eddies themselves - hence at high 
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degrees (e.g., n 2 4,200 for lo above). Moreover, even transient cross-correlations may result in 

deviations from spectrum ( 5 )  at lower degrees. Indeed, a softer or less blue SV spectrum, such as 

an attenuated quadratic, may indicate contributions from partially resolved eddies. 

Each set of Adi implies one F:, so derivation of theoretical SV spectral variance {[F: - 

{ F,C}I2} would require additional assumptions about the ensemble of equivalent SV sources - 

hence additional physical hypotheses about the eddy transport they represent. Extra hypotheses 

tend to complicate tests of the narrow scale flow hypothesis. Low degree physical deviations Fnc 

- {F:} caused by core dynamic processes can, however, be represented via cross-correlated 

equivalent SV sources. And cross-correlation of even a small fraction of the Ad; can cause 

deviations with magnitudes similar to IFn'}. We thus anticipate a spectral variance of magnitude 

similar to, or perhaps a few times larger than, {Fn } itself. Other aspects of SV spectral 

covariance are noted in Appendix D. Spectrum ( 5 )  is arguably better tested against a time 

averaged observational spectrum, not only to help average out effects of transient cross- 

correlations, but to identify persistent deviations from it. 

5. Tests of the SV Spectrum 

c 2 .  

Theoretical SV spectrum ( 5 )  has two parameters, amplitude C and source radius c-, to be 

estimated by fitting observational SV spectra F,(a,t). For a thin sub-layer, an estimate of c- 

amounts to an estimate of c, so the significance of its difference from seismologic core radius cs 

provides a test of equation (5 ) ,  hence the underlying narrow scale flow hypothesis. Curiously, 

the misfit between theoretical and observational spectra does not provide a sensitive test of the 

hypothesis. This is because the theoretical spectral covariance needed to fully establish the 

statistical significance of such misfit is not specified (see Appendix E). We therefore emphasize 

comparison of estimated SV source radius c- with independently determined cs. 
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To ease this estimation, and anticipating fluctuations about (5) amounting to a factor of about 

d', we minimize the sum of squared residuals to observational Zn(Fn) for degrees ndn  to rima. 

The sum of squared residuals per degree of freedom for d = nmax - nmin + 1 data fitted by p 

parameters is just 

%ax 
q2 = (d -p)- '  C [Zn(F,) - Zn{Fn")l2. 

n=ndn 

Of course, only if the residuals were approximately log-normally distributed might one hope that 

the estimates approximate maximum likelihood estimates. The estimation requires computation 

of expected parameter covariance, with the square root of the diagonal variances indicating 

expected parameter uncertainties. Multiplication of these values by q yields scaled parameter 

uncertainty estimates. Typically q c 1, so the scaled uncertainties are less, and the sensitivity of 

the test greater, than expected. 

5.1 Initial Test. The observational SV spectrum fitted first was computed from field model 

of LangeZ, Estes & Mead [1982]. This model GSFC 9/80 closely fits 15,206 Magsat 

observations, 7 1,000 POGO observations, measurements from 148 observatories, 300 filtered 

marine data, and 600 measurements from select repeat stations. It includes main field, first, 

second, and third time derivative coefficients through degrees 13, 13, 6, and 4, respectively, and 

observatory biases to account for local lithospheric magnetic anomalies. Unlike some more 

recent. field models, it imposes no smoothness or other constraints upon a core-source field. 

Table 1 lists epoch t of F,(a,t), the range of degrees n fitted (nmin-nmax), estimated core radius 

c- and its scaled uncertainty for three ranges. The bottom line, labeled "Avg.", gves results from 

fitting theoretical spectrum (5) to <F,> integrated over the interval 1960-1980 spanned by the 

model. The fit to all degrees 1-13 of the time-averaged spectrum yields c = 3470 91 km. Table 
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1 also shows results from fitting intermediate degrees 3-11 and, due to long-standing concerns 

about SV coefficients above degree 10 [Voorhies, 19841, from degrees 3-10. 

The agreement between geomagnetic SV spectral estimates of core radius in Table 1 and the 

3480 km seismologic value is excellent. Indeed, only one value of 18 differs from c, by more 

than twice its scaled uncertainty. The tabulated results are summarized as c- = 3.5 2 0.1 Mm = cs. 

The hypothesis of narrow scale flow by the top of Earth's core, as represented by the broad-scale 

SV spectrum (5) expected from an ensemble of compact eddies inducing laterally uncorrelated 

SV, thus passes our initial test. 

, 

For ami,, = 1, however, closer study reveals a systematic increase in estimates of c' from 

GSFC 9/80 with nmax. This is shown in Table 2a, which lists degree range, q2 from equation (6), 

estimated core radius with scaled uncertainty estimate in km, and error relative to c, in km. The 

latter are judged significant for nmax e 11 and so indicate a failure of theoretical spectrum (5 ) ;  

moreover, if the larger misfits found for nmx > 10 are due to poorly determined SV coefficients, 

then the smaller errors might be fortuitous. To check this, we set amin= 3; as shown in Table 2b, 

so doing tightens the fit and eliminates errors in c- in excess of twice the scaled uncertainties. 

Table 2b also shows increased misfit from degrees above 10. The tabulated results imply 

theoretical spectrum (5) adequately describes this observational SV spectrum except for degrees 

one and two. Downward continuation shows these exceptional terms contribute little to SV at 

the CMB. They may be reconciled via degree-dependent process variances from an alternative, 

non-log-normal, distribution. The exceptions can be understood in terms of fast decline of a 

strong dipole and rapid quadrupole rebound as defined below. 

Voorhies & Conrad [1996] found RI greater, and R2 less, than expected based on fits of 

spectra (Ala) or (Alb) to observational spectra at epoch 1980 - albeit within the ranges we 
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expected 80% of the time. We also found R1 decreasing and R2 increasing; moreover, for all 

orders m, we found (&gl" )/glm < 0 and (882" )/g2" > 0. The chances of such perfect (anti-) 

correlations were put at 1/8 for the dipole, 1/32 for the quadrupole, and 1/256 jointly. This 

otherwise remarkable coincidence was viewed merely as an efficient relaxation of the field 

towards expectation values. The large value of Fz/R2 and the perfect correlation, and the large 

value of dtR2/R2 itself, are called "rapid quadrupole rebound", as distinct from the quadrupole 

diminution noted by Stevenson [ 19831. 

5.2 A Softer SV Spectrum? To further investigate SV spectra, we use the attenuated 

quadratic SV spectrum expected from uncorrelated, randomly varying dipoles scattered 

throughout the interior of a ball of radius c, which is given by 

{ ~ n c ( ~  > = c * ~ ( ~  + 1)(C/a)2n+4 . (7) 

This softer SV spectrum is thought to be a proxy for contributions from some partially resolved 

eddies. It is not thought to describe SV from small scale eddies scattered throughout the core, or 

even a layer thicker than about 90 km, because equation (4) fixes the origin of core-source SV at 

the top of the core. Surprisingly, spectrum (7) may also be a proxy for effects of laterally 

heterogeneous mantle conductivity. Laterally homogeneous conductivity tends to harden a core- 

source SV spectrum because physical attenuation decreases with harmonic degree [McDonald, 

19571; however, mode coupling by lateral heterogeneity in deep mantle conductivity may in 

effect scatter some intense, narrow scale, core-source SV into broader scales, thereby softening a 

core-source SV spectrum before it emerges through Earth's surface. 

Tables 3a and 3b are analogous to Tables 2a and 2b, but show results of fitting proxy 

spectrum (7) to the 20 year average from model GSFC 9/80. Table 3a, with n,, = 1, shows 

small and insignificant errors in c for nmx < 11. Table 3b, with nmin = 3, shows large positive 
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errors in c that exceed twice the scaled uncertainty for nmx > 8. Evidently, spectrum (7) 

accommodates rapid &pole decline and quadrupole rebound, but is too soft for higher degrees. 

Further tests against other observational spectra might better distinguish between spectra (5), (7), 

and promising intermediate modulation factors such as [n(n+l)]5’4, particularly if the maximum 

degree of reliable F,(t) can be established. 

5.3 More Tests. Model CM3 [Sabaka, Olsen & Langel, 20021, fitted to Magsat, POGO and 

observatory data from 1960 to 1985, features a more comprehensive representation of external 

source fields than earlier models, an internal static field through degree 65, and a temporal spline 

parameterization of SV. The SV model was, however, constrained to reduce the amplitude of 

narrow scale SV that is poorly determined by geographically sparse data before POGO and after 

Magsat satellite surveys. Two constraints were used. The first conflicts with spectrum (5) by 

forcing the mean square value of the surface Laplacian of dBJdt, averaged over the sphere of 

radius cs and time, to be small - as if the SV spectral modulation factor were n-4 or less instead of 

nf3. This first constraint was not as strongly imposed as the second, which forces the mean 

square second time derivative of B,, also averaged over the sphere of radius over cs and time, to 

be small. f i s  reduces temporal variability in F, from model CM3, notably at high degrees; 

indeed, it helps makes the F, steady to withln 18% for n > 5, and to within 5% for n > 10. 

Comparison of mean SV spectra from models CM3 and GSFC 9/80, both averaged from 

1960-1980, shows the two sets of <F,> agree to within 25% for n e 11, with CM3 giving smaller 

values - typically 12% smaller. For degrees 11, 12, and 13, however, values from GSFC 9/80 

exceed those from CM3 by factors of 2.6, 1.8, and 34.5, respectively. The latter exceeds the 

factor of e anticipated from process variance. Evidently, &I3> is not reliably determined and so 

is not considered further. 
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Tables 4a and 4b show results of fitting theoretical SV spectrum (5) to the mean SV spectrum 

from CM3, averaged from 1960 to 1980. Low values for c- in Table 4a might again suggest 

spectrum (5) is too hard; yet the increase in estimated c‘ with nmax is evident. Table 4b confirms 

this to be largely due to d ; l >  and &2>. The fits listed in Table 4b are quite tight; indeed, for the 

minimum q2 of 0.0321, deviations from { Fn} are typically a factor of (1 .2)L1 instead of e“. 

Tables 5a and 5b show fits of proxy SV spectrum (7) to CM3. They confirm that the 

attenuated quadratic form does fairly well considering degrees 1 through nmax c 13, but yields 

errors in c that are judged significant for higher degrees 3 though nmax > 7. Downward 

continuation shows the higher degrees contribute far more to SV by the CMB than do F1 and 272. 

Although extended study suggests proxy spectrum (7) might be more suitable during another, 

shorter epoch (see Appendix F), it is bypassed for now in favor of expectation SV spectrum (5). 

6. Core Magnetic Spectrum from Narrow Scale Flow and a Weak Field 

Though (Fn/RJ1’* was studied empirically as a kind of summary dispersion relation for the 

core field, M. G. McLeod (1985, pers. comm.) pointed out other reasons to consider spectral ratio 

RnC/FnC. As it turns out, some hypotheses indirectly constrain this ratio in ways that allow a 

theoretical core-source spectrum R: to be obtained from a theoretical SV spectrum F:. One 

such hypothesis specifies the form of the temporal power spectrum [McLeod, 19961. Another is 

the hypothesis of “constant aspect ratio”, which asserts a single direct proportionality between 

horizontal wave-numbers and effective radial wave-numbers in the non-potential portion of the 

poloidal field near a spherical CMB. Such radial wave-numbers arise from analysis of the radial 

component of induction equation (4) at the top of a viscous sub-layer. A third also considers the 

radial component of (4), but at the top of a free-stream where narrow scale eddies mix and remix 

modes of a dynamically weak magnetic field. Yet another reorders arguments in Appendix B.3 

to obtain a relation proportional to (B17), hence (B21b), from relations (Bllb), (B18) and (4). 
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All these hypotheses lead from attenuated cubic SV spectrum (5 )  to attenuated l / n  core field 

spectra like (3b) and all seem compatible with the weak field hypothesis. For brevity, it is here 

argued on dimensional grounds that the available diffusivities, the weak field hypothesis, and SV 

spectrum (5 )  lead to this form for {R:}. 

Recall our narrow eddies at the base of a viscous sub-layer. Each eddy (i = 1, 2, 3, ... I )  has a 

characteristic Iateral speed U(i), a characteristic lateral length scale L(i) <c c, hence a lateral eddy 

diffusivity U(i)L(i). The ratios of lateral eddy diffusivities to molecular magnetic dffusivity q 

define eddy magnetic Reynolds numbers U(i)L(i)/q A(i). By continuity, the normal component 

of eddy-induced and other SV crosses a thin, weak viscous sub-layer largely unaltered and 

specifies the SV signal emerging from a spherical core into a source-free exterior. At the top of 

the sub-layer, however, u vanishes and even the eddy-induced portion of the signal is transmitted 

via molecular diffusion. Owing to its importance in such radial magnetic transport, the 

molecular diffusivity may be considered a radial diffusivity. The A(i) may then be considered 

indices of dffusive anisotropy - ratios of lateral eddy to radial molecular diffusivities. 

Neither q nor eddy diffusivities are directly measured; however, observation and analysis can 

reveal empirical diffusivities. In particular, for a sufficiently time-varying field, time-averaged 

observational spectra an> and <Fn> together define regular empirical time constants 

Tn [~&>/d;,>]"~ . (8) 

When combined with horizontal wave-numbers, defined via the surface Laplacian operator to be 

knh [n(n+1)/c2]'", these Tn further define lateral empirical diffusivities 

Dn E (k,h)-2 T;' = [C2/n(n+l)~[d;n>/~,>~1/2 . (9a) 

- The theoretical counterpart to definition (9a) is written 

c n  (k: ) - 2 ~ - 1  [ ~ ~ / a ( n + l ) ] [ { ~ ~ } / { ~ n C ) 1 " ~  . (9b) 
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For a core-source field governed by induction equation (4), the only physical diffusivities that cn 

can depend on are q .and the eddy diffusivities, though the latter may depend on other quantities. 

On dimensional grounds, any dependence of cn on degree n should, and arguably must, be 

determined from that of these diffusivities. 

The magnetic field and Ohmic heating of interest are far too weak to cause either appreciable 

anisotropy or heterogeneity in core electnc conductivity; therefore, q is effectively independent 

of the field, its SV and the harmonic degrees thereof. Eddy speeds and length scales, hence eddy 

diffusivities, do not depend directly on SV. They depend only on the fluid velocity, which can 

depend on the field via the Lorentz force, JxB, in the usual momentum transport equation. 

If the Lorentz force is weak compared with other forces near the core surface, as for 

tangentially geostrophic flow [LeMoueZ, 19841, then the fluid velocity and the eddy diffusivities 

depend but weakly on the magnetic field. If this dependence is negligible, then the eddy 

diffusivities must be effectively independent of the magnetic field, hence the harmonic degrees of 

the field. On this weak field hypothesis, neither molecular nor eddy diffusivities near the top of 

the core depend on the harmonic degrees n of either the core field or its SV. Yet these are the 

physical diffusivities from which the dependence of c n  on degree n must be determined. With no 

basis on which to construct a degree-dependent theory of cn, we deduce that the cn in (9b) must 

reduce to a single constant, independent of n, 

cn = [c2/n(n+l)][{Fn"}/{R,C}]*'2 = 5 ,  

or 

{F,C}I{R,C} = L2c4[n(n+1)l2 = G-2. ( 1 Ob) 

By (lob), the core field spectrum is expected to be much softer than that of core-source SV. 
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To check (lob), Voorhies & Conrad [1996] fitted the function PoZn[n(n+l)] - 2 Z n ~  to 

observational values of In[F,/R,] from degrees 3-12 of model GSFC 9/80 at epochs 1960, 1970, 

and 1980. The three resulting values for PO average to 1.957 & 0.156. This agrees with the 

expectation value PO = 2 in (lob). The check is independent of the radius of Earth’s core. The 

three values for ~6 are within a factor of 1.94 of 2,640 years (not the “26,400” years misprinted in 

Voorhies & Conrad [ 19961). The implications for 5, Rm, and CJ are discussed in Appendix G. 

Substitution of expectation SV spectrum (5) ,  from the iiarrow scale flow hypothesis, into 

equation (lob), from the weak field hypothesis, yields our expectation core field spectrum 

Though obtained in different ways, quantitative distinctions between spectrum (1 lb) and earlier 

forms (A.la), (A.lb), and (A.lc) are largely confined to degrees 1 and 2. 

7. Tests of the Core Field Spectrum 

Expectation spectrum ( l lb)  has two parameters, amplitude K and source radius c-, to be 

estimated by fitting observational spectra R,(a,t). An estimate of c- again amounts to an estimate 

of c, so the significance of its dlfference from cs provides a test of ( l lb),  hence the underlying 

hypotheses of narrow scale flow and a dynamically weak field by the top of Earth’s core. The 

hypotheses do not specify process variance { [R: - {R;}l2},  so the misfit between theoretical and 

observational spectra does not provide a sensitive test of the hypotheses. This process variance 

might be large; therefore, we again emphasize comparison of magneto-spectral estimates of c 

with the seismologic value cs. 
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To ease this estimation, and anticipating fluctuations about ( l lb)  amounting to a factor of 

about $', we minimize the sum of squared residuals to observational ln(Rn) for degrees nmin to 

n-. The sum of squared residuals per degree of freedom for n, - nhn + 1 data fitted by 2 

parameters is just 

The estimation requires computation of expected parameter covariance; the square root of the 

variances give expected parameter uncertainties. Multiplication of these values by s yields scaled 

parameter uncertainty estimates. Typically, s < 1 and the test is more sensitive than expected. 

Voorhies et al. [2002] describe a test of spectrum ( l lb )  at Magsat epoch 1980. Here 

spectrum (1 lb) is tested against the independent observational spectrum from the grsted Initial 

Field Model ( O m )  [Olsen, et al., 20001. The epoch 2000 OIFM features a weighted least 

squares fit of main field coefficients through degree 19, and external field coefficients of degrees 

1 and 2, to 13,859 select data acquired by the Danish Geomagnetic Research Satellite Qlrsted. 

Table 6 lists the range of degrees fitted (nmin = 1 though n,), s2, the estimate of c with scaled 

uncertainty, and the error of the estimate relative to cs = 3480 km. Selection of the minimum s2 

solution at nmax = 12 fixes a third parameter and yields c = 3542 & 61 km as the core radius 

estimated from 0rsted. No significant errors in c are found for degree ranges 1 to nmn < 13, so 

(1 lb) passes this test. Estimates from these degree ranges all agree and average to 3489 & 39 km. 

The increased misfit and significant errors introduced with degrees above 12 are attributed to 

non-core, likely crustal, source fields. 

To refine the test by Voorhies et al. [2002], we use Rn from model CM3 of Sabaka, Olsen 

and Langel [2002] at Magsat epoch 1980. Table 7 lists the range of degrees fitted, s2, the 
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estimate of c with scaled uncertainty, and the error of estimate relative to c,. Again, no 

significant errors in estimates of c are found for degree ranges 1 to n,, < 13. Radii from this 

I degree range all agree and average to 3495 2 28 km. This average more heavily weights lower 

degree Rn, unlike the process variance for the R: distribution of Voorhies & Conrad [ 19961. 

Table 8 is analogous to Table 7, but with nmin = 3. It confirms that much of the scatter, as 

measured by the larger values for s2 in Table 7, comes from strong R1 and weak Rl. Table 8 also 

shows the effect on estimates of c associated with R8 being lower, and Rg higher, than expected 

based on the fit of (llb). The larger residuals at degrees 1, 2, 8, and 9 may help provide some 

indication of geomagnetic variability about (1 lb), hence process variance. 

A reviewer asks why analysis of magnetic spectra is any better at determining core radius 

than the frozen-flux method of Hide. I did not claim it is; however, estimates obtained using 

spectrum ( l lb)  and the main field models are typically more accurate and precise than those 

obtained using the frozen-flux approximation [Hide & Malin, 1981; Voorhies & Benton, 1982; 

Voorhies, 19841. In particular, some 44 frozen-flux core locations obtained from a few field 

models at various truncation levels average to 3506.2 & 300.9 [Voorhies, 1984, equation (3.21)]. 

The first 9 estimates in Table 6 average to 3489 39 km; the first 9 in Table 7 average to 3495 2 

28 km. Frozen-flux methods rely heavily upon uncertain phase information in harmonic orders m 

and upon uncertain secular change information from either SV models or main field models at 

different epochs. Analysis of F, also relies on SV. In contrast, the main field spectral method 

relies on comparatively well-determined R, alone; moreover, it does not require the frozen-flux 

approximation - either in section 6, in the scale analysis of Appendix B.3 and B.4 that requires 

finite (r to obtain spectrum (3b), or in the analysis of flux diffusion that returns a similar 

spectrum on the constant aspect ratio hypothesis. Evidently, these advantages reduce scatter. 



8. Summary and Conclusions 

A theoretical form for the low degree, core-source geomagnetic spectrum { R:} is deduced 

from the hypotheses of narrow scale flow and a dynamically weak magnetic field by the top of 

Earth’s core. This form ( l lb)  differs but slightly from those advanced by Stevenson [1983] and 

McLeod [1985, 19961. To test these hypotheses, this theoretical spectrum is fitted to two 

observational spectra, one determined by analysis of data from the QIrsted satellite and the other 

by analysis of independent data from Magsat and POGO satellites and surface observatories. 

These fits yield estimates of the radius of Earth’s core. These estimates differ insignificantly 

from the seismologically established radius, as judged by the scaled uncertainty estimates, for 

degree ranges 1 to nmx < 13. Because these errors of estimate are not significant, the hypotheses 

taken together pass these tests. 

Significant errors introduced with higher degree multipole powers are attributed to non-core, 

likely crustal source fields. Very small errors, less than 10 km, are found by excluding the 

strong, rapidly declining dipole power and the weak, rapidly rebounding, quadrupole power. 

To deduce the expectation spectrum (llb), we can use the theoretical low degree SV 

spectrum (9, which follows from the narrow scale flow hypothesis alone. There are other ways 

to obtain both spectra ( l lb )  and (5) ,  as illustrated in Appendix B; however, the geophysical 

foundation of all such methods known to date appears to rest on the narrow scale flow and weak 

field hypotheses - provided the temporal power spectrum of McLeod [ 19961 can be inferred from 

the approximate spatial spectra. Initial tests of SV spectrum ( 5 )  gave estimates of the radius of 

Earth’s core that differ insignificantly from the seismologic value. This shows that the narrow 

scale flow hypothesis can pass a test against seismology that is independent of the surficially 

weak field hypothesis. Attempts to test (5 )  with the same rigor as (l lb),  however, reveal errors 
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arising from rapid dipole decline and quadrupole rebound. Though F1 and F2 contribute little to 

SV at the CMB, such exceptional behavior of may cast doubt on (5 ) ;  yet it may instead indicate a 

need to use degree-dependent process variances and a different distribution for residuals about 

SV spectrum (5). 

Clearly, physical hypotheses are not proved true simply by passing a few tests, nor does 

falsification preclude their use in successive approximation. And there might be different 

physical hypotheses that yield theoretical spectra like those presented here. The hypotheses of 

narrow scale flow by the top of the core, as described by expectation SV spectrum (3, and of a 

dynamically weak core surface field, described via magnetic spectrum (1 lb), have nonetheless 

demonstrated considerable merit. By enabling magneto-locations of Earth’s core, these spectra 

demonstrate greater utility and accuracy than far softer spectra. Evidently, far softer spectra do 

not provide reliable prior information on either the broad scale field or its secular variation. It is 

hoped these geophysical hypotheses and geomagnetic spectral forms will be further tested, and 

provide some basis for comparison with alternatives that may emerge, in the future. 

Appendix A: Magnetic Spectral Ranges 

To compare a core-source field spectrum with low degree energy, intermediate, and high 

degree dissipation ranges with theory, recall the magnetic energy spectrum M(k) as a function of 

Cartesian-Fourier wave-number k (see, e.g., Moffat [1978], Krause & Rudler [1980]). The 

proportionality M(k)  a k-3’2 is indicated for the inertial sub-range of three-dimensional, 

homogeneous, isotropic, incompressible hydromagnetic turbulence; however, kinetic helicity 

injection at large k leads to an inverse cascade of magnetic helicity and M(k) a k-’ at low k 

[Pouquet, Frisch & Leorat, 1976; Stevenson, 19831. The latter shows similarity between an n-’ 

spectrum and a downwardly continued observational spectrum Rn(0.55a, 1965) for n 5 8. 
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2 112 Next define horizontal wave-number khn = [n(n+l)/c ] via the surface Laplacian. Granting 

M(k) = k-’ at low k, if M(k) = {R;(c))and if k2 0~ kh2, then {R;(c)} = [n(n+l)]-’n at low n and 

{R;(a)} = K1 [n(n+1)]-”2 (c/a)2nd (Ala) 

z KM (n+1/2)-’I2 (c/a)2n+4 (Alb) 

z KS n-l (c/al2OA . (A 1 c) 

Here K1, KM and KS denote constants, c core radius, and a Earth’s radius. By inequality (3a) for 

n 2 ND, if either Stevenson’s [1983] relaticn (Alc), Il4cLeod’s 119961 rule (Alb), or equation 

(Ala) holds at low degrees n NE, then NE 5 ND, then there may indeed be an intermediate, if not 

inertial, sub-range between NE and ND. 

Of course, the “ifs” strain a comparison already made difficult by possible effects of mantle 

heterogeneity near the CMB; anisotropy imposed by rotation at planetary angular velocity 51, the 

CMB, and the field itself; compression; suppression of turbulence by rotation or a strong field; 

and sources in the mantle and crust. Yet as argued in Appendix B, the net effect might amount to 

a time-averaged spectrum similar to (Ala), perhaps with power distributed unevenly among the 

various orders within each R,, notably R1, due to anisotropy and lateral heterogeneity. There is 

evidence that spectra like (Ala) describe both modem observational spectra and time-averaged 

paleo-field behavior [Voorhies & Conrad, 19961. Moreover, agreement between such spectra 

and observation [Voorhies et al., 20021 offers some support for the temporal magnetic power 

spectrum used by McLeod [1996] to obtain (Alb) for n 2 2. 

Appendix B: Spectra from Scale AnaIyses 

A reviewer asks if the spectrum of a magnetic field in a turbulent fluid has physical 

plausibility analogous to the famous Kolmogorov k-5‘3 scaling for the Iunetic energy density 

spectrum E(k) in the inertial sub-range of a turbulent flow (see, e.g., Tennekes & Lumley [1972]) 
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and requests mathematical illustration. Here we show the answer is yes and offer an illustration 

that yields both expected spectrum (3b) and SV spectrum (5). As noted by Pouquet et al. [1976], 

however, care is needed to obtain a magnetic spectrum excited by small scale flow, instead of an 

Alfven-wave spectrum excited in an inertial sub-range maintained by large scale flow (see B.l 

below). Additional care is needed to obtain a spectrum for a self-governing dynamo, rather than 

one driven by assumed rates of kinetic energy injection (see B.2). Finally, to deduce theoretical 

spectra comparable with observational spectra, extra care is needed to account for sphericity and 

the anisotropic dynamical effects of rotation, Lorentz forces, and the CMB (see B.3 and B.4). 

Consider flow of a magnetized Newtonian fluid with scalar mass density p, kinematic shear 

viscosity v, magnetic permeability p, electric conductivity o and magnetic diffusivity l/po q.  

Quasi-steady changes in macroscopic B due to fluid velocity u and magnetic diffusion are 

described by the induction equation (4). For a characteristic length scale L and flow speed U, the 

ratio of motional to diffusive terms scales as the magnetic Reynolds number 

Rrn UL/q = IVx(uxB)I IqVxVxBI-' . 

This is also the ratio of the characteristic eddy diffusivity to the magnetic diffusivity. 

Much as the kinetic energy transport equation is obtained from the inner product of u with 

the momentum equation, the magnetic energy transport equation is obtained via the inner product 

of B with the induction equation (see, e.g., Chandrasekhar [1981]; Gubbins & Roberts [1987]). 

The Ohmic dissipation of magnetic energy per unit volume, -J2/o, scales as qB2/2pL2. The 

viscous dissipation of lunetic energy per unit volume, -pvu.VXVXu for solenoidal flow, scales 

as vpU2/2L2. The ratio of magnetic to viscous djlssipation scales as ( v / q ) - ' ( B 2 / ~ U 2 ) ,  where v/q 

is the magnetic Prandtl number. In the flow of a fluid metal with v/q c< 1, if magnetic energy 

density B2/2p is at least as great as kinetic energy density pu2/2, then magnetic dissipation will be 

24 



very much greater than viscous dissipation, So we focus on magnetic dissipation and dynamo 

action, whereby motion of the fluid conductor across the field does work against the Lorentz 

force, converting kinetic into magnetic energy. The latter may accumulate, dissipate into heat, or 

radiate away. The rate of work done against the Lorentz force per unit volume, -u.(JXB), scales 

as UB212pL. 

More generally, u and B may vary on all possible length scales I and may be represented 

mathematicd!y via superposition of orthogonal modes, such as Fourier transforms with wave- 

vector k and wave-number I k I = k =: l-’. Work done by flow at one scale against the non-linear 

Lorentz force can energize the field over a range of scales. And magnetic energy at one scale is 

influenced by the flow over a range of scales. Because of this mode mixing, magnetic energy 

dissipated at any single scale may come from lunetic energy distributed over a range of scales. 

Mode mixing is governed by the usual selection rules. We shall, however, only consider 

states of a hydromagnetic system with a standard spectral deviation <[M(k) - ~kf(k)>]~>”~ that 

does not vastly exceed the mean dM(k)>. In such a state, a theoretical expectation spectrum 

{ M ( k ) }  =: dM(k)> could be of some use; moreover, there is a fair chance that a sample spectrum 

at a single time is within a factor of two or three of the mean. In or near such a statistically 

steady state, energy mixed from one mode ka to other modes ki at one rate is re-mixed to still 

other modes kj and, on average, returns to mode k, at about the same rate. This implies the 

transformed magnetic and velocity fields are so thoroughly intertwined that fields of like wave- 

number are physically related, as can be seen by repeated or multiple applications of the selection 

rules. We focus on the physical relations, with the understanding that they result from mode 

mixing rather than a single application of the selection rules. 
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Suppose u and B can be considered smooth on very small spatial scales, with scale lengths e 

ho. At length scale ho, let Rm attain unity at characteristic speed u = vo: 

vohdq = 1 .  cB2) 

At this scale and speed, eddy diffusivity ul = voho will equal magnetic diffusivity q and advective 

time-scale ‘ca = l/u will equal diffusive time-scale 74 = 12/‘q. At larger scales, or at greater speeds, 

fluid motion may curl the field faster than it diffuses away via electrical resistance to its source 

current of density J (VXB = ClJ, VXVXB = -V2B). 

Let b(Z) denote the magnetic field of length scale Z and let bo denote b(h0). At 1 = ho and 

speed vo, the magnetic dissipation scales as Do(h0) = qb2/2@2. By equation @2), this also 

scales as the rate of work against the Lorentz force: Do = qb2/2$~$ = vob2/2@o. So ho is the 

magnetic dissipation scale, ho = (qb;/2@0)~’~, and vo is about [2Ddobo 3 . 

B. 1 Kolmogorov-Alfven Scaling 

2 112 

Denote by E the total magnetic dissipation per unit volume in a hydromagnetic flow. Suppose 

this occurs mainly over a range of length scales less than or approximately equal to ho. Further 

suppose the magnetic energy dissipated comes from the kinetic energy pU2/2 of a flow with 

speed U and large geometric length scale L >> ho. The energy is supplied by work done against 

the field B of length scale L. If this energy conversion occurs in advective time-scale W U ,  then 

E -- UB2/2pL = p U 3 / 2 L .  033) 

. More generally, the energy dissipated may come though a range of scales. Consider a sub- 

range ho < l < L and VO 5 u 5 U through which magnetic energy cascades from the field of scale L 

toward the dssipation range at rate 

E -- ub2/2pl = pu3/21. @4a) - 
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This assumes the time-scale for kinetic energy density pu2/2 in motions u(Z) of scale Z to be 

transferred to the field b(Z) is 78. Granting (B4a) for now and solving for u gives: 

u = (2pZdb2) = (2Zdp)’”. (B4b) 

The implied kinetic energy per unit volume at wave-number k = I‘’ is pu2/2 = ( p / 2 ) ’ ” ( ~ / k ) ~ ~ ;  

therefore, the kinetic energy density per wave-number is 

Em(k)  = pu2/2k = ( p ~ ~ / 2 ) ” ~ k - ~ ’ ~ .  (B5)  

This is proportional to the Kolmogorov form for an inertial sub-range. Also by relation (B4b), 

the magnetic energy per unit volume at k is b2/2p = (p/2)1’3(~/k)u3; therefore, in this case the 

magnetic energy density per wave-number is 

036) 113 -513 M m ( k )  = b2/2M = ( P E ~ / ~ )  k . 

As appropriate to a field of Alfven waves excited by motions in an inertial sub-range, Em(k) and 

M a @ )  are approximately equal. Of course, relations (B4a) though ( 3 6 )  fail when dynamical 

constraints render advective time-scales za irrelevant to the transfer of kinetic energy. 

B.2 Large Scale Flow 

By presuming the rate of work done against the field equals the kinetic energy density per 

advective time-scale Ta, case B.l  compels magnetic and kinetic energies to be in approximate 

balance, as in an Alfven wave field. For dynamo action, however, magnetic energy density 

b2(Z)/2p need only be replenished over free decay time 7d. The rate of work done against the 

Lorentz force still scales as ub2/2pZ, but the kinetic energy transfer only needs to occur over time 

Z2/‘q. In this case, relation (B4a) would be replaced with 

E = ub2/2pl = pu2~/2Z2. 

Granting this for now and solving for u yields 

u = (2Z2~pq)1’2 = (2@E/b2) = (Zb2/pqp). 

27 



This relation implies 

b2/2p  =: ( p q ~ / 2 ) ’ ’ ~  . (B 8) 

By relation @8), the magnetic energy density at k = I -’ is also about (pq~/2)”~; therefore, in this 

second case, the magnetic energy density per wave-number is 

039) 112 -1 MuF(k) = b2/2# = ( p ~ d 2 )  

Also from relation (B7b), the kinetic energy density at k is pu2/2 = (dq)k- ’ ;  therefore, in this 

k . 

case the kinetic energy per unit mass per wave-number is 

EuF(k) = pu2/2k = (&/q)k-3. (B 10) 

This k-3 form describes a predominantly large scale flow. It illustrates how a strong field may 

suppress small scale flow. Indeed, E(k)/M(k) from relations (B10) and (B9) is (2dpq ) k , 

which falls off as k-2 and increases with o3I2 and &’I2. The spectrum of magnetic change, obtained 

using relations (B9) and (B lo), the motional term in equation (4), and implicit treatment of mode 

mixing, is proportional to that of the field itself: F u ~ ( k )  = (a,b)2/k = (kub)2/k = ( 2 ~ p ) ~ ’ ’ ( o / p )  k . 

Evidently, this is not the case. near the top of Earth’s core. 

3 112 -2 
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Case B.2  might seem to describe a more efficient dynamo than case B.l  because, presuming 

Td >> T ~ ,  the kinetic energy required to maintain a large scale field would be extracted over a 

longer time. In fact, case B.2 still presumes: (i) Ohmic dissipation is confined to small scales 5 

ho on which z d  5 T ~ ;  (ii) an energy cascade from large to small scales; and (iii) a time-scale for 

kinetic energy transfer devoid of dynamical justification. 

B.3 Small Scale Flow 

Now suppose most of the kinetic energy is injected at fairly small scales near Z*, albeit with 

I* 2 ho. This motion may set up a cascade of magnetic energy to smaller scales, but may also 

drive a mode-mixed reverse cascade to larger scales. Let E indicate the overall magnetic 
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dissipation in the flow, which realistically occurs over the full range of length scales. At larger 

scales I > I*, and near a statistically steady state, the rate of work done against the Lorentz force 

approximately balances Ohrmc Issipation, so 

Iu.(JxB)I = a-'u(l> I * ) [ ~ ( z  > Z * ) I ~ / ~ I  

( B 1 w  2 2 2 -  
=: [b(Z > I*)] //L OZ - I J2/o1. 

Here a is a constant representing typical geometric factors; it is large if the field tends to be 

nearly Lorentz force-free, or if u tends to be parallel to either J or B. We solve (B 1 la) for 

u(Z>Z*) -- aqz , (B1 lb) 

and see a as a pseudo-scale invariant magnetic Reynolds number. By (B1 lb), we expect 

{E(k  c k*) }  = { p[u(k < k*)I2/2k} = a2pq2W2 . (B 12) 

This is consistent with a predominantly small scale flow. 

We cannot assume the time-scale on which work is done at the expense of kinetic energy at 

length scale I because it depends on dynamical constraints near the top of a self-excited, self- 

regulating core geodynamo. Following Voorhies [ 1991, equation (BS)] and Benton [ 1992, 

equation (32)], the dynamical constraints are here summarized by the magneto-geostrophic radial 

vorticity balance near the top of the core, 

~ V S . ( ~ S Z , U ~ )  - Vs.(BJ,) 0313) 

where Vs. denotes the surface divergence operator, Qr the radial component of planetary angular 

velocity (!2R,cose), B r  the radial component of B, and us and J, the horizontal components of u 

and J, respectively, Anisotropies imposed by rotation and by the field are explicit in equation 

(B13). The published derivations explicitly account for anisotropy imposed by the CMB by 

omitting small terms with ur and J, , terms which would be zero at the spherical boundary with a 

rigid, insulating mantle. The condition J, = 0 implies any poloidal current, hence toroidal 
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magnetic field, is zero at the boundary; therefore, a magnetic spectrum deduced using (B13) 

should only be applied to the poloidal field at the top of the core and, upon upward continuation, 

to the potential field of core origin. 

If the simpIe scaling of (B13) were multiplied by 1, it would suggest Lorentz and Coriolis 

forces are of similar magnitude. Yet (B13) concerns vertical vorticity, not forces, and can hold 

when the Lorentz force is weak. Moreover, such scaling overlooks some geometric effects. For 

example, axisymmetric zonal flows contribute nothing to the left side of (B13), yet may be 

important in the force balance; similarly, a class of currents tangent to contours of B, may help 

generate the main field, yet contribute nothing to the right side of (B13) [Voorhies, 19911. To 

avoid any misimpression, equation (B13) is here scaled as 

2PpSzu(Z > Z*)/l = [b(Z > Z*)I2/pl 2, 

where p is a constant representing typical geometric factors. On the hypothesis of a very weak 

Lorentz force near the top of the core, p << 1. 

From relation (B 14), we find 

[b(Z > Z*)I2/p = 2ppQzu(z > Z*) . 

We use relation (B1 lb) to eliminate u from (€315) and obtain 

[b(Z > Z*)I2/p =: 2ClPpQy . 

From this relation, the expected magnetic energy density per wave-number is 

{ M ( k  < k * ) }  f { [b(k < k*)I2/2pk} = appQqk-'. (I3171 

Lf relation (Blla) between Ohmic dissipation and the rate of work done against Lorentz 

forces can be extended to a rate of change of kinetic energy, so that qb2/pZ2 = ub2/pZ =: pu2/z, we 

can solve for the transfer time-scale z = (pu2p/b2)Z2/q. By relations (Bllb) and (B16), this 
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d y n d c a l  time-scale turns out to be z = a/2sZp, another pseudo-scale invariant for I > I*. Of 

course, for Q >> 1 and p << 1, z >> Q-’. 

With the right hand side of induction equation (4) scaled according to the motional term, and 

using relations (B 12) and (B 16), the expected SV spectrum is 

{ ~ ( k  > k*) 1 = {(a b12/k) = [ku(k k*)b(k < ~ 1 1 2 ~  = 2a3pr13pp~ P .  0318) 

The ratios { 2pM}/{F} from relations (B18) and (B17) define scale-variant squared time-scales 

( a ~ k ~ ) - ~  which constrain a independent of p (see section 6). 

If I* = ho, an energy cascade from k* to larger k would go directly into the dissipation range. 

Instead suppose I* > ho and consider the intermediate sub-range ho c I c I*. Let E~ denote the 

magnetic dissipation on scales 5 ho, so E~ < E. This dissipated energy is re-supplied by work done 

against the Lorentz force which, in turn, comes from kinetic energy on scales near I*. This 

energy input is now at relatively larger scale I* > I, so one might re-consider cases (B.l) or (B.2). 

Motions in the sub-range should contain considerable kinetic energy, perhaps suggesting use of 

(B4a). By relation (B17), however, these motions are embedded in a relatively larger scale field, 

which may favor (B7a). Yet a small scale eddy cannot be everywhere parallel to a large scale 

field, so neither the rate of work against the Lorentz force nor the magnetic dissipation will be 

negligible in the intermediate range. Therefore, neither case (B.l) nor (B.2) need apply. Further 

analysis of an intermediate, if not inertial, sub-range is omitted for brevity. 

B.4 Simple Discretization and Accounting for Sphericity 

We need to relate continuous Cartesian magnetic spectrum (B 17) with discrete spherical 

harmonic spectra (Ala), (3c) or (1 IC), and SV spectrum 0318) with ( 5 ) ,  albeit only to the order of 

magnitude accuracy appropriate to a simple scale analysis. To do so, first integrate continuous 

spectrum (B 17) over the small domain from k - AW2 to k + AW2, 
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k + AW2 k + AU2 

(B 19a) 

C$@Q~ h[(l + AW2k)/(l - AW2k)I (B 19b) 

= a & d 2 q ( A W k ) .  (B 19c) 

where the logarithm has been expanded and approximated in terms of 4W2k <c 1. 

Next, guided by the surface Laplacian operators in the transfonn domains, set k2 = n(n+l)/c2. 

This ixnplies hk = (n +1/2)[n(n + 1)]- c 4n, and we set An = 1 to express the magnetic energy 112 -1  

density in harmonics of integer degree n. With these identities we obtain 

k + AU2 

k-M2 
5 {M(k < b)}dk = appQq (n +1/2)[n(n + 1)l-I  . 

Note k has been treated as a horizontal wave-number kh. Distinctions between radial wave- 

vector component kr and kh are omitted for three reasons. First, we are concerned with the 

spectrum of the field on a thin shell by the top of the core. Second, apart from the tiny jump in 

horizontal components across a viscous sub-layer, this field should match a core-source potential 

field (solenoidal B = -VV, so -V2V = 0, h2 + k: = 0, and kr = +ikh). Third, the vertical vs. 

horizontal anisotropy implied by CMB conditions was already used to derive equation (B13), 

hence is implicit in relation (B 17). This omission of distinctions between h2 and k: is consistent 

with the constant aspect ratio hypothesis (see section 6). 

Relation (B20) gives the magnetic energy density per harmonic degree. The expected 

squared magnetic field per harmonic degree at the top of the core is 2p times this quantity, so 

{Rn(C-)) =: (2dNPQVl )  (n +1/2)[n(n f 1 ) I - l  (B21a) 

at low degrees. On upward continuation to radius r > c, this yields 

{R,C(r)} = K(n + %)[n(n+l)]-' ( c - / T - ) ~ ~ + ~  , 
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which is relation (3b). Though obtained in a very different way, it is indistinguishable from 

equation ( l lb)  and differs but slightly from equations (Ala), (Alb), and (Alc). We have, 

however, identified K = 2apppqIs1. Granting p = M, p = lo4 kg/m”, SZ = 7.29~10- s , and q = 

1.6 m2/s, the estimate K = 4 . 5 ~ 1 0 ’ ~  nT2 [Voorhies et al., 20021 implies aP is roughly 1.5~10-*. 

5 -1 

With a = R, = 92 from Appendix G, we find p = 1 . 7 ~ 1 0 - ~  << 1. This is consistent with, and 

arguably requires, a dynamically weak field near the top of the core. These values further yield a 

dynamicid time scale d 2 Q p  of order 120 years. 

Similar operations on relation (B lS), albeit with no multiplication by 2p, yields 

{Fn(c-)} 4a3Pq3ppi2 c - ~  (n + 1/2)[n(n + I)] (B22a) 

for low degrees, or, on upward continuation to r > c, 

{Fn(r)}  = 4a3pq3ppS2 c%(n + 1/2)[n + 11 (c-lr)2n+4 . 

This is indistinguishable from equation (5). The ways in which these relations are obtained could 

hardly be more different, but both suppose narrow scale flow and so give the same result. 

Appendix C: Derivation of an Expectation SV Spectrum 

The magnetic change induced by each narrow-scale eddy can be approximated in the far field 

by an equivalent source of change atop a mainstream of radius c-. Though a single magnetic flux 

vector on c- acts as the point source of an offset dipole field, lateral advection replaces it with an 

adjacent vector of slightly different orientation and magnitude in time At; therefore, the net 

change in the exterior field is equivalent to that from a differential change in magnetic dipole 

moment Ad. Here we derive the secular variation (SV) spectrum from one such equivalent SV 

source, then the SV spectrum (5) expected from I random, uncorrelated equivalent SV sources. 

Denote by AVi(r) the change in scalar magnetic potential at observation point r due to the 

equivalent magnetic dipole moment change Adi at position ri corresponding to the ith eddy. Note 
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I r I > I ri I = c- and index i = 1 , 2, 3, . . . , I. Further denote by D' the normalized rate of change 

AdilkAt, The superposition of all I such changes gives the total change in potential at r, 

I I D' 1 

i= 1 i=l 4n: Ir - ril 
AV(r) = C AVi(r) = - C - 0 V--- At 

I 

i= 1 
= C (Di/4n) V*lr - Gl-'At 

wnere 0" denotes the gradient operator in ienns of, and acting on, ri coordinztes (radius r;, co- 

latitude Oi, east longitude Q,). With the Schmidt normalized associated Legendre function of 

degree n and order m denoted P,"(cose), the spherical harmonic expansions of the AVi are used 

to rewrite (Clb) as 

I 00 n 

i=l n = l  m=O 
AV(r) = C aAt C ( a / ~ ) ~ + '  C [Anmi  COS^@ + Bn"i sinrn@] P,"(cose). 

To determine coefficients (Anmi, Bnmi) in expansion (Clc) from moment changes Di, recall 

where Cum = cosmQP,"(cose) and S," = sinm$P,"(cose) (see, e.g., Jackson [1975, eqn. (3.70) or 

Langel [1987, eqn. (195)l). With the components of Di denoted (Ori, Do', DQi), we use (C2) to 

evaluate the gradient in (Clb), equate the result with (Clc), and obtain 
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In the limit as At approaches zero, the equivalent core-source SV coefficients are 

Substitution of these coefficients into equation (2) gives the equivalent core-source SV spectrum. 

Clearly, stztistical hypotheses about moment changes Adi, notably those implied by physical 

hypotheses about eddy induced SV, can be used to derive an expectation core-source SV spectra 

n I I 

m=O i=l i= 1 
{FC(r>ri)} = (n + l ) ( ~ / r ) ~ " ~ {  C [( + ( Bn"J2} 

n I I  
C 

m=O i=l  k=l 
{F,"(D c)}  = (n + l)(a/r)2"A{ C [( C (Anmi Anmk) + (Bnmi Bnmk)]  } (C5b) 

Suitably correlated, perhaps non-conserved, equivalent SV sources may also describe effects 

of molecular magnetic diffusion; unfortunately, the linearity of the diffusion operator might lead 

one to an equivalent source representation of the core field itself, which is judged ill-advised. 

SV Spectrum from a Single Change in Dipole Moment 

The SV spectrum from a single Di is 

n 

m=O 
F,"(r > Ti) = (n + l)(dr)2nd C (Anmi)2 + . 

By (C3a) and (C3b), the sum over order m in (C6) is 
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where G,(Q) = ( 4 7 ~ ~ ) - ~ ( ~  /a)2n-2 and both Pnm and its derivative are evaluated at cosei. 

To cast (C7) into a more illuminating form, we use spherical harmonic identities to reduce 

the four terms on the right, each a sum over m. For arbitrary (e,$), the sum rule for Schmidt 

normalized harmonics (see, e.g., Jackson [1975, eqn (3.62) with y = 01, LangeZ[1987]), 

n n 

m=O m=O 

is differentiated repeatedly with respect to 8 to obtain 

x [cnm(e,$)i2 t [sUm(e,+)l2 = c [ P , ~ ( c o s ~ ) I ~  = 1 , 

n d 
c 

m=O de 
2Pn" --Pn" = 0 ; ( C W  

n d2 d 

m=O d28 de 

The first term on the right of (C7), the radial term, sums to (D,'n)2 by (C8a); the fourth term, the 

cross term, sums to zero by (C8c). 

c 2P,"--Pnrn + 2[-Pn"]2 = 0 .  (C8C) 

To reduce the second, co-latitudinal term on the right of (C7), recall that r2 times the surface 

Laplacian of Sn" gives 

By adding this to the corresponding relation for Cum, we find 

therefore, 

n d 11 case d 

m=O de m=O sine de 
c pDrn --P," = c [(rn/sineI2 - n(n + I)][P," l2  - -- P," --P," . (C9C) 

The last term on the right sums to zero by (C8b); substitution of the remainder into (C8c) yields 
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To reduce the third term on the right of (C7) and complete reduction of the second, we need 

the sum over m of - [ m ~ n r n ( ~ ~ ~ e i ) / ~ i n e i ] 2 .  In terms of the angle y between the r and ri , x cosy, 

and Legendre polynomials P,(x), it has been shown that this sum reduces to 

n fln(x) 
2 c -[m~,~(cose~)/sine~l = - ----- I x =  . 

m=O dx 

Evaluation of Legendre's equation at x =1 and the normalization Pn(1) = 1 then imply 

(Clla) 

(Cllb) 

The proof of (Cllb) by Whaler & Gubbins [1981, Appendix B], which they attribute to P. H. 

Roberts, is more elegant than that by Voorhies [1998]. 

By (Cllb), (C10) is equal to n(n+1)/2; therefore, the second term on the right of (C7) sums to 

Similarly, the third term on the right of (C7) sums to n(n + 1)(D4i)2/2. n(n + 1)@2)2/2. 

Substitution of (C7), as simplified by identities (C8b,c), (C10) and (Cllb), into (C6) yields 

This is the SV spectrum from a single changing moment Adi/At = k D i  at ri < r. 

Expected SV Spectrum from Uncorrelated, Randomly Oriented Changes in Moment 

At an instant in geologic time, the I equivalent SV sources D' representing eddy induced SV 

are treated as a sample population with mean square moment change {D2}. The coefficients in 

(CSa,b) are given in terms of the D' by (C3a,b). The source positions (0i,@i) on c- are taken to be 
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random samples from a laterally uniform spatial distribution. Such positions are expected to be 

uncorrelated in that { r i * r k }  = &{ (ri)2}, where the Krgnecker 8ik  is 1 if i = k and is 0 if i # k.  

For randomly oriented moment changes corresponding to a kinematically unbiased ensemble 

of eddes, any particular orientation is as likely as its opposite, 

{Ori) = = =o, (C13a) 

there is no reason to expect cross-correlated components for an individual moment change, 

{DlDa’} = {D:un;} = {DiDg’} = 0, 

there is no reason to expect cross-correlated moments 

{ D,‘D,k} = { D2Dek} = { Dg’D;} = 0 for i f k 

{DriD>} = {DriD:} = {DiDlpk} = 0 for i # k, 

but the auto-correlations remain perfect 

{Drill:} = { DeiDei} = { DQiDoi} = { D 2 } / 3 ,  (C13e) 

Equations (C13a-e), summarized by ID:} = 0 and {DjD:} = {D2/3}&k6j l ,  provide a 

mathematical statement of “random equivalent SV sources” associated with a kinematically 

(C13b) 

(C13c) 

(C13d) 

unbiased ensemble of eddies. Polarizing dynamical effects, whereby eddies might tend to align 

with the planetary rotation axis andor the field, are outside the focus of this appendix. 

Though D‘ depends on position (€Ii,@), position is independent of D’; therefore, when 

evaluating {Anmi} and {Bnmi} via (C3a,b), the expectation operator passes through the harmonic 

functions of (@,A). These expectation values are zero by (C13a), as are expected or mean SV 

coefficients by {(C4a,b)}, hence the expected components of SV itself. Though the expected SV 

vector from random equivalent sources is zero, the expected spectrum is not. 

Equations (C13a-e) and (C3a,b) imply contributing coefficients are not cross-correlated 

{Anm,Anmk} = Bnmk} = O for i # k . (C14) 
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Again, the auto-correlations remain. Substitution of (C14) into (C5b) yields 

n I  

m=O i=l 
{F:(r > ri ) }  = (n -I- l)(a/r)2"+4{ C [ C (A,mi)2 + } (C15) 

The order of sums in (C15) is reversible, so the expected spectrum from I uncorrelated SV 

sources is the sum of expected spectra from each source. With ri = c-, (C15) and (C12) imply 

{ ~ ~ ~ ( r  > c-)} = (4.nr3>-2 I ( c - / ~ ) ~ " - ~  n(n + l > [ n { ~ , 2  

By (C13c), this simplifies to 

{ F:(r > cy} = (471r3)-2(1{ D2}/3)  (C-/r)2n-2 [n(n t 

With C = ( 4 n ~ - ~ ) - ~ ( 2 1 ( D ~ } / 3 ) ,  (C17) becomes 

{ ~ : ( r  > c-)} = c n (n + '/z)(n + 1)(c-/r)2n+4, 

which is just equation (5). 

Appendix D: SV Spectral Variance 

For steady c-, equation (5) also gives the time-averaged spectrum expected from a temporal 

sequence of kinematically unbiased ensembles of equivalent SV sources, denoted <{ F:(t)}>, 

albeit with amplitude C replaced by <C(t)>. The associated sequence variance <[{F:(t)} - 

<{F;(t)}>l2> is proportional to <[C(t) - <C(t)>I2>, but has the same functional dependence on n 

as the square of spectrum (5). The root mean square sequence deviation is therefore proportional 

to the expected SV spectrum itself. This is a strong restriction on the kinds of long term 

magnetic variations that could be adequately described by the narrow scale transport model. For 

example, if eddies and eddy transport change in response to a change in a driving function (e.g., 

heat flux across a CMB, heat and buoyant component fluxes across an inner core boundary, etc.), 

then this sequence of kinematically unbiased ensembles could describe a corresponding change 

in the amplitude, but not the shape, of the expected low degree SV spectrum. 
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Different sets of Mi can represent broad-scale SV induced by different numbers of eddies 

transporting different fields at different speeds; however, a single ensemble from this temporal 

sequence of ensembles will give but one ensemble-mean low degree SV spectrum. Each such 

ensemble represents lateral magnetic transport by an ensemble of eddies with a corresponding 

mean number of edles, mean speed and, arguably, a mean pattern and intensity for the field 

being transported. If the mean number of eddies, mean speed, and mean field properties can and 

do change by their own magnitude from one ensemble to the next in the sequence, say from one 

epoch to another, then the sequence variance will not only be proportional to, but will arguably 

have amplitude similar to, or perhaps somewhat greater than, c {F ,"}>~  itself. 

Physical deviations F,(t) - { F:} may also arise from dynamic processes that cause serial, as 

well as lateral, correlation between SV induced by eddies which grow, vacillate and decay. Such 

deviations are arguably of a magnitude similar to {Fnc)  itself and may persist for a long time, 

perhaps as long as dynamic JxB conditions associated with a polarity chron, a particular pattern 

of heterogeneous electrical or thermal boundary conditions, etc.. If so, and if spectrum ( 5 )  still 

described a geologically longer time average of F:(t), then natural fluctuations F:(t) - {F:} 

would again have variance similar to, if not somewhat greater than, { F:}2. 

Appendix E: Effects of Uncertain Process Variance 

The statistical sipficance of residuals depends on both data covariance and process 

covariance. Here, data covariance represents uncertainties in an observational SV spectrum 

Fn(a, t),  hence the sparse distribution of uncertain geomagnetic measurements used to determine 

SV coefficients. Process covariance represents fluctuations of a theoretical core-source SV 

spectrum Fnc(a,t) about its expectation value, plus omitted non-core contributions to the 

observations. For F,(a,t) determined by careful analyses of satellite and surface observatory 
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measurements, and anticipating process variance of magnitude similar to { F,"(a))' itself, process 

variance should exceed data variance at low degrees. 

The narrow scale flow hypothesis specifies neither a probability distribution function for SV 

spectrum fluctuations nor a process variance, so one can but estimate the latter from residuals. I 

doubt this distribution can be determined from 10 or 12 sample residuals. Fluctuations F,"(t) - 

{ F:} cannot be normally distributed because F:(t) is positive, but many other distributions are 

eligible (truncated Gaussian, log-normal, chi-squared, etc.). Whatever the trial distribution, when 

process variance is estimated from but a single set of residuals, here by scaling weights so the 

sum of square weighted residuals per degree of freedom becomes unity, then the (in)significance 

of the residuals does not test the hypothesis. The test is in the comparison of estimated 

parameters with values determined by independent analyses of independent data. We therefore 

emphasize comparison of magneto-spectral estimates of source radius c with independent cs. 

Appendix F: A Softer SV Spectrum for 2000? 

On orbit magnetic calibration and magneto-optical alignment checks enabled the fitting of 

high quality main field and SV coefficients to high precision scalar and oriented vector data 

acquired by grsted. Here we consider Fn(2000) from model OSVM [Olsen, 20021, which fitted 

24,585 two-component vector and 68,448 scalar and field aligned (arsted data from a 2.5 year 

interval and data from about 100 observatories for 1998-2000. Compared with en> for 1960- 

80, there are decreases in F2 and perhaps F6, increases in F3, F4, and Fs, but rather small changes 

for F7, F8, and Fg. The decrease in F2 suggests less rapid quadrupole rebound. 

Estimates of c- using OSVM and spectrum (5) are typically well below cs. Estimates using 

' proxy spectrum (7) and n ~ n  = 1, shown in Tables Fla, agree fairly well with cs and have less 

misfit than shown in Tables 3a and 5a; moreover, for nmin = 3, the errors shown in Table Flb are 

rather less than found in Tables 3b and 5b. We therefore suggest spectrum (7) might be more 
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suitable than (5) at some epochs, perhaps due to changes in lateral length scales of core surface 

flow, hence in the lateral correlation length scales of SV at the top of the core. Whether or not 

this is substantiated by other epoch 2000 models with non-steady SV, different filters of 

observatory data, normal weights, or different treatments of external fields remains to be seen. 

A broadening in scale of core surface flow between the interval 1960-1980 and the QIrsted 

epoch 2000 may explain a softer SV spectrum, though other explanations are possible. If 

spectrum ( 5 )  were be shown to be wholly inadequate outside the 1960-1980 interval, yet ( l lb)  

remained adequate, then arguments leading to ( l lb)  might have to be revised - possibly by 

including effects of Lorentz forces on eddy diffusivities. In this way it might be possible to 

discern deviations from tangential geostrophy by spectral methods. 

Appendix G: A Bound on Core Conductivity 

Until a few years ago, observational SV spectra were not thought to be well enough 

determined to high enough degrees to test spectrum ( 5 )  against seismology; it was only checked 

via (lob) in the context of ( l lb)  [Voorhies & Conrad, 19961. From the check of (lob), we infer 

there is but a single important lateral empirical diffusivity, independent of degree n. Moreover, 

from the value of a, this lateral empirical diffusivity is = c2/c(o = 147 m2/s with an uncertainty 

factor or divisor of two. If this is equal to a single ensemble mean lateral eddy diffusivity UL, 

then there is but one important eddy magnetic Reynolds number R ,  = poUL. If one assumes CJ = 

5 X 1 0 5  S/m and vacuum permeability, then this magnetic Reynolds number is R, = 92 with an 

uncertainty factor of two. Another interpretation, which does not assume o and allows forced 

dipole decay, uses ~6 to bound core magnetic diffusivity q c ~(C/~T)~ /CQ,  = 30 m2/s, and, for 

vacuum permeability, core electric conductivity o 2 2.7 x lo4 S/m, both with an uncertainty 
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factor of two. This is consistent with a fluid metallic core and, in turn, provides a check on the 

larger theory. 
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Table 1. Core ra&us estimated by fitting log-theoretical SV spectrwn (5) to 
log-observational spectrum GSFC 9/80 for various epochs and degree ranges. 

1980 1-13 3441+96 3-11 34292135 3-10 3280+ 127 
1975 1-13 3472295 3-11 35392106 3-10 3396+ 79 
1970 1-13 3475299 3-11 35402115 3-10 33872 89 
1965 1-13 3490297 3-11 3547+115 3-10 33972 90 
1960 1-13 3488287 3-11 3484+ 99 3-10 33342 55 

Avg. 1-13 3470291 3-11 3511+101 3-10 33602 61 

Table 2a: Core radius and scaled uncertainty 
from equation (5) and the time-averaged 
observational SV spectrum GSFC 9/80. 

Degrees 42 C- Error 
Fitted lull km 

1-6 
1-7 
1-8 
1-9 
1-10 
1-1 1 
1-12 

1-13 

0.23 16 
0.1868 
0.1982 
0.1938 
0.17 10 
0.3591 
0.4138 

0.5041 

3026 2 174 - 454 
3045 124 - 435 
3130 2 108 - 350 
31842 90 -296 
31962 73 -284 
33182 95 - 162 
33912 91 - 89 

3470+ 91 - 10 

Table 2b: As Table 2a, but nhn = 3. 

Degrees q2 C* Error 
Fitted km km 

3 -6 
3-7 
3-8 
3-9 
3-10 
3-1 1 
3-12 

3-13 

0.0921 
0.0833 
0.0709 
0.0579 
0.0551 
0.2005 
0.2168 

0.2612 

34522234 - 28 
3315 & 151 - 165 
3378 2 108 - 102 
33982 77 - 82 
33602 61 - 120 
3511+101 + 31 
35792 92 + 99 

3658+ 89 +178 
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Table 3a: Core radius and scaled uncertainty 
from equation (7) and the time-averaged 
observational SV spectrum GSFC 9/80. 

Degrees q2 CoreRadius Error 
Fitted km km 

1-6 0.2040 34882188 + 8 

1-8 0.1526 35192106 + 39 
1-9 0.1359 35472 84 + 67 

1-11 0.2466 36422 86 + 162 
1-12 0.2701 3701+ 80 +221 

1-13 0.3223 37672 79 +287 

1-7 0.1652 34622133 - 18 

1-10 0.1210 35322 68 + 52 

Table 3b: As Table 3a, but nfin = 3. 

Degrees q2 CoreRadius Error 
Fitted km km 

3-6 
3-7 
3-8 
3-9 
3-10 
3-1 1 
3-12 
3-13 

0.079 1 
0.0846 
0.0668 
0.0534 
0.059 1 
0.1743 
0.1788 
0.2070 

3826 2240 + 346 
36442168 + 164 
3688 2 114 + 208 
36872 81 +207 
36282 68 +148 
3774 2 102 + 294 
38322 89 +352 
39022 85 +422 

Table 4a: Core radius and scaled uncertainty 
from equation (5) and the time-averaged 
constrained SV spectrum CM3. 

Degrees q2 CoreRadius Error 
Fitted km km 

1-6 0.2305 29942172 -486 
1-7 0.1950 30452127 -435 
1-8 0.2017 31272108 -353 
1-9 0.2064 31922 94 -288 
1-10 0.1848 32112 78 -269 
1-11 0.1778 32422 65 -238 
1-12 0.1836 32792 59 -201 

1-13 0.3096 32002 66 -280 
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Table 4b: As Table 4a, but nmin = 3. 

Degrees q2 CoreRadius Error 
Fitted km km 

3-6 0.0743 
3-7 0.0546 
3-8 0.0458 
3-9 0.0401 
3-10 0.0373 
3-11 0.0321 
3-12 0.0322 

3-13 0.2786 

34082208 - 72 
33422 124 - 138 
33902 87 - 90 
34232 65 - 57 
33942 51 - 86 
34002 39 - 80 
3420+ 34 - 60 

32825 83 - 198 

Table 5a: Core radius and scaled uncertainty 
from equation (7) and the time-averaged 
constrained SV spectrum CM3. 

Degrees q2 CoreRadius Error 
Fitted km km 

1-6 
1-7 
1-8 
1-9 
1-10 
1-11 
1-12 

1-13 

0.2076 
0.1664 
0.1517 
0.1400 
0.1228 
0.1103 
0.1045 

0.3050 

34522 188 - 28 
3462+ 133 - 18 
35165106 + 36 
35552 86 + 75 
35492 69 + 69 
3559+ 56 + 79 
35782 48 + 98 

34742 71 - 6 

Table 5b: As Table 5a, but nmin = 3. 

Degrees q2 CoreRadius Error 
Fitted km km 

3-6 
3-7 
3-8 
3-9 
3-10 
3-1 1 
3-12 

3-13 

0.0615 
0.05 14 
0.0398 
0.0323 
0.0371 
0.0324 
0.0289 

0.3198 

3777 & 209 + 297 
3673 & 132 + 193 
37012 88 +221 
3714+ 63 +234 
3665+ 54 + 185 
3654& 42 + 174 
36622 34 + 182 

35022 94 + 22 
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Table 6: Core radius and scaled uncertainty 
from equation (1 lb) and observational main 
field spectrum OIFM 

Degrees s2 
Fitted 

1-4 0.5588 
1-5 0.3730 
1-6 0.2803 
1-7 0.2326 
1-8 0.2021 
1-9 0.2054 
1-10 0.1797 
1-11 0.1602 
1-12 0.1539 

Core Radius 

3441 & 575 
3461 2334 
3444 2 218 
3496 5 159 
3454 2 120 
3524 103 
35222 82 
3516+ 67 
35422 58 

km 
Error 
km 

- 39 
- 19 
- 36 
+ 16 
- 26 
+ 4 4  
+ 42 
+ 36 
+ 61 

1-13 0.1826 35892 57 +lo9 
1-14 0.1782 36105 51 +130 
1-15 0.3056 36812 61 +201 
1-16 0.4436 37515 68 +271 
1-17 0.8074 3853+ 86 +373 
1-18 1.2241 3958+ 99 +478 

Table 7: Core radius and scaled uncertainty 
from equation (1 lb) and observational main 
field spectrum CM3. 

Degrees s2 
Fitted 

1-4 0.7210 
1-5 0.4817 
1-6 0.3613 

1-8 0.2773 

1-10 0.2466 

1-7 0.2900 

1-9 0.2810 

1-11 0.2194 
1-12 0.1975 

1-13 0.1996 
1-14 0.1956 
1-15 0.2546 
1-16 0.4281 
1-17 0.6684 
1-18 0.9795 

Core Radius 
km 

3467 5 658 
3498 5 384 
3503 5252 
3520 5 179 
3432 5 140 
3513 2 120 
35042 96 
35082 78 
3507+ 65 

3.5622 52 
36125 54 
3687+ 65 
3770k 76 
3859-t. 87 

3539+ 59 

Error 
km 

- 13 
+ 18 
+ 23 
+ 40 
- 48 
+ 33 
+ 24 
+ 28 
+ 27 

+ 59 
+ 82 
+132 
+207 
+290 
+379 
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Table 8: As Table 7, but with nmin = 3. 

Degrees s2 CoreRadius Error 
Fitted km km 

3-6 0.0175 34525102 - 28 
3-7 0.0126 34825 62 + 2 

3-9 0.1144 3484+lll + 4 

3-11 0.0828 3486+ 65 + 6 
3-12 0.0725 3487+ 52 + 7 

3-8 0.0521 3336+ 91 -144 

3-10 0.0958 34762 83 - 4 

Table F1 a: Core radius and scaled uncertainty 
estimate from equation (7) and observational 
SV spectrum OSVM. 

Degrees q2 CoreRadius Error 
Fitted km km 

1-6 0.0731 34585112 - 22 
1-7 0.0617 3426+ 80 - 54 
1-8 0.0665 34835 69 + 3 
1-9 0.0765 35385 63 + 57 

1-11 0.0763 3548+ 47 + 68 
1-12 0.2162 3648t 71 +168 
1-13 0.4410 37662 93 +286 

1-10 0.0778 3573+ 55 + 93 

Table Flb: As Table Fla, but n- = 3. 

Degrees q2 CoreRadius Error 
Fitted km km 

3-6 0.0561 34605 183 - 20 
3-7 0.0404 3408+108 - 72 
3-8 0.0530 3.5162 97 + 36 
3-9 0.0620 3598+ 87 +118 
3-10 0.0586 3638+ 68 +158 
3-11 0.0664 3587+ 60 +lo7 

3-12 0.2116 37235 94 +243 
3-13 0.4230 38752 33 +395 
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